
Programming for Interaction with a Server

To allow anexpansionin thetypesof problemsthatcanbepresented,thiscontestintroducesamoreflexible way
of interactingwith a program.Besidestheusualway of testinga programby redirectinga testfile asstandardinput,
someproblemswill requiretheprogramto receive its standardinput from andsendits standardoutputto aserverthat
canvary theprogram’s input basedon its previousoutput. Sincethis requiressomeslight modificationsin how the
programwritesits output,theproblemdescriptionwill alwayswarnyouwhenyourprogramwill beinteractingwith a
server insteadof just readingafile.

Therequiredmodificationisalwaystowritetostandardoutputusinganoutputmethodthatyouknow isunbuffered,
or alwaysto flushstandardoutputexplicitly afterwriting to it. Thepoint is that theserver needsto seeyour output
immediatelyafter you write it, andthis may not happenif it’s beingbufferedsomewhere. Note that the rules for
the automaticflushingof buffersvary by what is beingoutputto: the fact that you seethe outputon your terminal
immediatelyafter your programwrites it doesn’t meanthat the samething will happenwhenit’s outputtingto the
server.

Hereareexamplesof how to flushstandardoutput:
C fputs("1\n",stdout); fflush(stdout);

C++ cout << "1\n" << flush;

Java System.out.println("1"); System.out.flush();

Problemsthatrequirecommunicationwithaserverwill provideascriptthatyoucanruntosetupthecommunication
with theserverandto runyourprogramwith it.


